ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ

Bioinformatics

1. ΓΕΝΙΚΑ

ΣΧΟΛΗ School of Geosciences
ΤΜΗΜΑ Department of Agricultural Biotechnology and Oenology
ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Undergraduate
ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ t%ce%b1bo-45-%ce%b45 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 4th
ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Bioinformatics
ΑΥΤΟΤΕΛΕΙΣ ΔΙΔΑΚΤΙΚΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ
σε περίπτωση που οι πιστωτικές μονάδες απονέμονται σε διακριτά μέρη του μαθήματος π.χ. Διαλέξεις, Εργαστηριακές Ασκήσεις κ.λπ. Αν οι πιστωτικές μονάδες απονέμονται ενιαία για το σύνολο του μαθήματος αναγράψτε τις εβδομαδιαίες ώρες διδασκαλίας και το σύνολο των πιστωτικών μονάδων.
ΕΒΔΟΜΑΔΙΑΙΕΣ ΩΡΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΠΙΣΤΩΤΙΚΕΣ ΜΟΝΑΔΕΣ
Lectures 3 5
Προσθέστε σειρές αν χρειαστεί. Η οργάνωση διδασκαλίας και οι διδακτικές μέθοδοι που χρησιμοποιούνται περιγράφονται αναλυτικά στο 4.    
ΤΥΠΟΣ ΜΑΘΗΜΑΤΟΣ
Γενικής Υποδομής (ΓΥ),Ειδικής Υποδομής (ΕΥ), Γενικών Γνώσεων (ΓΓΔ) και Επιστημονικής Περιοχής (ΔΔΤΝ, ΕΔ, ΕΥΣ, ΗΛ, ΠΑ) .
 Special Background
ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΜΑΘΗΜΑΤΑ:  
ΓΛΩΣΣΑ ΔΙΔΑΣΚΑΛΙΑΣ και ΕΞΕΤΑΣΕΩΝ:  Greek
ΤΟ ΜΑΘΗΜΑ ΠΡΟΣΦΕΡΕΤΑΙ ΣΕ ΦΟΙΤΗΤΕΣ ERASMUS Όχι
ΗΛΕΚΤΡΟΝΙΚΗ ΣΕΛΙΔΑ ΜΑΘΗΜΑΤΟΣ (URL) https://eclass.emt.ihu.gr/courses/FD335/

2. ΜΑΘΗΣΙΑΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ

Μαθησιακά Αποτελέσματα
Περιγράφονται τα μαθησιακά αποτελέσματα του μαθήματος οι συγκεκριμένες  γνώσεις, δεξιότητες και ικανότητες καταλλήλου επιπέδου που θα αποκτήσουν οι φοιτητές μετά την επιτυχή ολοκλήρωση του μαθήματος.

The course aims to teach students the applications and methods of extracting information related to genetic material and proteins from large databases.

Γενικές Ικανότητες
Λαμβάνοντας υπόψη τις γενικές ικανότητες που πρέπει να έχει αποκτήσει ο πτυχιούχος (όπως αυτές αναγράφονται στο Παράρτημα Διπλώματος και παρατίθενται ακολούθως) σε ποια / ποιες από αυτές αποσκοπεί το μάθημα;.
Αναζήτηση, ανάλυση και σύνθεση δεδομένων και πληροφοριών με τη χρήση και των απαραίτητων τεχνολογιών - Προσαρμογή σε νέες καταστάσεις - Λήψη αποφάσεων - Αυτόνομη εργασία - Ομαδική εργασία - Εργασία σε διεθνές περιβάλλον - Εργασία σε διεπιστημονικό περιβάλλον - Παράγωγή νέων ερευνητικών ιδεών Σχεδιασμός και διαχείριση έργων - Σεβασμός στη διαφορετικότητα και στην πολυπολιτισμικότητα - Σεβασμός στο φυσικό περιβάλλον - Επίδειξη κοινωνικής, επαγγελματικής και ηθικής υπευθυνότητας και ευαισθησίας σε θέματα φύλου - Άσκηση κριτικής και αυτοκριτικής - Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης
  • Working independently.
  • Production of new research ideas.
  • Search for, analysis and synthesis of data and information, with the use of the necessary technology.

3. ΠΕΡΙΕΧΟΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

  • Chapter 1. The Fasta algorithm.
  • Chapter 2 The Blast algorithm.
  • Chapter 3. Multiple alignment of nucleic acid and protein sequences.
  • Chapter 4. Protein motifs.
  • Chapter 5. Phylogenetic trees.
  • Chapter 6. Prediction of protein secondary structures.
  • Chapter 7. Promoter finding.
  • Chapter 8. The Needleman algorithm.
  • Chapter 9. Position-specific scoring matrices.
  • Chapter 10. PAM and Blosum Tables.
  • Chapter 11. Predicting protein 3D structures.
  • Chapter 12. Predicting RNA secondary structures.
  • Chapter 13. Finding enzyme active site animoacids and hydrophobic regions.

4. ΔΙΔΑΚΤΙΚΕΣ και ΜΑΘΗΣΙΑΚΕΣ ΜΕΘΟΔΟΙ - ΑΞΙΟΛΟΓΗΣΗ

ΤΡΟΠΟΣ ΠΑΡΑΔΟΣΗΣ
Πρόσωπο με πρόσωπο, Εξ αποστάσεως εκπαίδευση κ.λπ.
  • In the classroom, face to face.
ΧΡΗΣΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ
Χρήση Τ.Π.Ε. στη Διδασκαλία, στην Εργαστηριακή Εκπαίδευση, στην Επικοινωνία με τους φοιτητές
  • Basic software (windows, word, power point, the web, etc.).
  • Support of learning process through the electronic platform / e-class.
ΟΡΓΑΝΩΣΗ ΔΙΔΑΣΚΑΛΙΑΣ
Περιγράφονται αναλυτικά ο τρόπος και μέθοδοι διδασκαλίας. Διαλέξεις, Σεμινάρια, Εργαστηριακή Άσκηση, Άσκηση Πεδίου, Μελέτη & ανάλυση βιβλιογραφίας, Φροντιστήριο, Πρακτική (Τοποθέτηση), Κλινική Άσκηση, Καλλιτεχνικό Εργαστήριο, Διαδραστική διδασκαλία, Εκπαιδευτικές επισκέψεις, Εκπόνηση μελέτης (project), Συγγραφή εργασίας / εργασιών, Καλλιτεχνική δημιουργία, κ.λπ. Αναγράφονται οι ώρες μελέτης του φοιτητή για κάθε μαθησιακή δραστηριότητα καθώς και οι ώρες μη καθοδηγούμενης μελέτης ώστε ο συνολικός φόρτος εργασίας σε επίπεδο εξαμήνου να αντιστοιχεί στα standards του ECTS

Teaching Organization

ActivitySemester workload
Lectures and practice39
Essay70
Independent Study16
Total125
ΑΞΙΟΛΟΓΗΣΗ ΦΟΙΤΗΤΩΝ
Περιγραφή της διαδικασίας αξιολόγησης Γλώσσα Αξιολόγησης, Μέθοδοι αξιολόγησης, Διαμορφωτική ή Συμπερασματική, Δοκιμασία Πολλαπλής Επιλογής, Ερωτήσεις Σύντομης Απάντησης, Ερωτήσεις Ανάπτυξης Δοκιμίων, Επίλυση Προβλημάτων, Γραπτή Εργασία, Έκθεση / Αναφορά, Προφορική Εξέταση, Δημόσια Παρουσίαση, Εργαστηριακή Εργασία, Κλινική Εξέταση Ασθενούς, Καλλιτεχνική Ερμηνεία, Άλλη / Άλλες. Αναφέρονται ρητά προσδιορισμένα κριτήρια αξιολόγησης και εάν και που είναι προσβάσιμα από τους φοιτητές.

The evaluation of the students is conducted in the Greek language.

The assessment methods are:

  • short answer questions,
  • open ended questions,
  • problem solving,
  • written work.

The course aims to master the basic knowledge of Bioinformatics, as well as software skills

Evaluation criteria:

  • Study and understanding of special topics of Bioinformatics, which are relevant to the scientific field of Agricultural Biotechnology and Oenology.
  • Manipulation of data on computer and understanding of the algorithms that underlie the analysis tools.

The evaluation criteria are explicitly stated and can be accessed by the students through the e-class platform, in the “course description”.

5. ΣΥΝΙΣΤΩΜΕΝΗ ΒΙΒΛΙΟΓΡΑΦΙΑ

Συγγράμματα

  1. [86054818]: Bioinformatics & Functional Genomics, Jonathan Pevsner.
  2. [94702956]: Introduction to Bioinformatics, ARTHUR M. LESK.
  3. [59380291]: Introduction to Genomics, Arthur M. Lesk.
  4. [13256855]: Bioinformatics-Computer Applications in Health Care and Biomedicine, Cimino J., Shortlife.
  5. Book: Bioinformatics. ISBN: 978-1-119-33558-0 Andreas D. Baxevanis (Editor), Gary D. Bader (Editor), David S. Wishart (Editor), 2020. Willey.